
Introduction to Intel Advisor
at NERSC

NERSC
November 3 2016

Mathieu Lobet, Tuomas Koskela

Purpose of Intel Advisor

Intel Advisor is composed of Vectorization advisor and Threading advisor that
help to ensure that your code realizes full performance potential.

Vectorization advisor is a vectorization optimization tool:

•  Help to identify time-consuming loops that can benefit from vectorization or

already vectorized

•  Help to identify vetorization and efficiency issues (dependencies, spilling,
memory access...) and propose solutions

•  Help to ensure that vectorization is safe and quantify effects of
vectorization (vectorization efficiency, roofline performance model)

Mathieu Lobet, NERSC, November 2016 - 2

Factors that prevent vectorization

Loop-carried dependencies/data dependencies

For(i = 0 ; i < N ; i++) {

 A[i+M] = A[i] + B[i];

}

For(i = 0 ; i < N ; i++) {

 sequential_function(i);

}

Call to sequential functions

Void function(float * A, float * B) {

 for(i = 0 ; i < N ; i++) {

 A[i] = B[i] * C;

 }

}

Pointer aliasing

Do i=1,N

 A(i) = B(i) + C(i)

 S(1:M) = A(1:M)

Enddo

Inner/Outer loops

Mathieu Lobet, NERSC, November 2016 - 3

Factors that slow down vectorization

Mathieu Lobet, NERSC, November 2016 - 4

Indirect/strided memory access

Memory latency/throughput (low flop/
byte ratio)

For(i = 0 ; i < N ; i++) {

 A[C[i]] = B[D[i]];

}

For(i = 0 ; i < very big ; i++) {

 A[i] = c*B[i];

}

Small trip count not multiple of vector length

For(i = 0 ; i < small; i++) {

 A[i] = c*B[i];

}

Branching, divisions, exp...

For(i = 0 ; i < small; i++) {

 if (B[i] > 0) {

 A[i] = C[i]/B[i];

 }

}

Very Good references for Advisor

Mathieu Lobet, NERSC, November 2016 - 5

Intel Advisor Linux presentation (description of the different surveys, links
toward specific command documentation):
https://software.intel.com/en-us/get-started-with-advisor-vectorization-
linux

Intel Advisor Getting Started/FAQ:
https://software.intel.com/en-us/get-started-with-advisor
https://software.intel.com/en-us/articles/vectorization-advisor-faq

The NERSC website:
http://www.nersc.gov/users/software/performance-and-debugging-tools/
advisor/

How to perform a collection

Mathieu Lobet, NERSC, November 2016 - 6

Use the Gui interface for performing
analysis on a login node:

Cray: CC -dynamic -g -openmp -O3 -xMIC-AVX512 mycode.c –o $APPNAME

Intel: CC -g -openmp -O3 -xMIC-AVX512 mycode.c –o $APPNAME

Compile for advisor:

Perform analysis by command
line :

salloc –N 1 –p debug –t 01:00:00

module load advisor

advixe-gui ./$ANALYSIS_DIR

salloc –N 1 –p debug –t 01:00:00

module load advisor

srun -n 1 -c 1 advixe-cl –collect $ANALYSIS

--project-dir $ANALYSIS_DIR

--search-dir src:r=$SRCDIR

--trace-mpi ./$APPNAME

Different kind of collections

Mathieu Lobet, NERSC, November 2016 - 7

srun -n 1 -c 1 advixe-cl -collect $ANALYSIS --project-dir $ANALYSIS_DIR

--search-dir src:r=$SRCDIR --trace-mpi ./$APPNAME

$ANALYSIS=survey: general overview of the performances and the vectorization state of the

code.

$ANALYSIS=tripcounts: improves the survey by dynamically exploring loop iteration execution

and propose better decisions about your vectorization strategy. It measures #FLOP count and

cumulative data traffic necessary for the Roofline performance model.

More information here: https://software.intel.com/en-us/get-started-with-advisor-cli-mpi

$ANALYSIS=dependencies: refine analysis by checking for real data dependencies in loops the

compiler did not vectorize because of assumed dependencies.

$ANALYSIS=map: (Memory Access Pattern) refine analysis by checking for various memory

issues, such as non-contiguous memory accesses and unit stride vs. non-unit stride accesses.

Other options

Mathieu Lobet, NERSC, November 2016 - 8

-no-auto-finalize: Results are not finalize after the run. This is useful for
collections on KNL that takes longer time than on Haswell. Finalization can
then be performed on Haswell or when opening the results via the GUI.

-flops-and-masks: take into account the masks in the vector operations on
KNL.

Analyzing the results

Mathieu Lobet, NERSC, November 2016 - 9

Analyze the results via the GUI:

Module load advisor

advixe-gui ./$ANALYSIS_DIR

The cache-aware roofline model [2]:
Roofline automation in Intel Advisor :

•  Requires the survey and the
tripcounts analysis

•  Computation of the roofline:
u-bench-based

•  AVX-512 mask-aware

•  Break-down by loops or
functions

•  Measure L1 <-> Register
traffic: what CPU demands
from memory sub-system to
m a k e a c o m p u t a t i o n
àCumulative traffic through
L1/L2/LLC/DRAM/MCDRAM

•  GUI for quick viewing

“Roofline is a visually intuitive performance model used to bound the performance of various
numerical methods and operations running on multicore, manycore, or accelerator processor
architectures.”[1]

[1] S. Williams et al. CACM (2009), crd.lbl.gov/departments/computer-science/PAR/research/roofline
[2] A. Ilic et al., IEEE Computer Architecture Letters (2014

Mathieu Lobet, NERSC, November 2016 - 11

Very Good references for Advisor

Let’s have a short demonstration

Thank You

Mathieu Lobet, NERSC, November 2016 - 12

